acDevel.op

Hydraulic Fracturing Freshwater

Reducing freshwater in hydraulic fracturing: An analysis of fracturing fluids used in the Montney Formation in Alberta and policy recommendations for freshwater reduction

Mirella Chiappe¹, Paulina Wozniakowska¹, Rasoul Sheikhmali¹, Jorge Nustes²

University of Calgary¹, University of Alberta² Scholarship recipients and graduates of the NSERC CREATE ReDeveLoP Program under Grant #386133824.

ReDeveLoP Conference, Hilton - Calgary, Alberta May 26-31

To create fractures & ease production from unconventional resources

Potential Negative Impacts

Water contamination

Impacts on aquatic ecosystems

Disturbing water cycle

Quality and availability of potable water

Hydraulic Fracturing Fluids (HFF)

FLUID TYPE	FLUID TYPE PRIMARY CARRIER FLUID		ENERGIZING FLUID	
WATER-BASED	Water	along with proppant >99%	None	
ENERGIZED – CRYOGENIC	Water	26 - 65%	Liquefied Nitrogen (N ₂) or Carbon Dioxide (CO ₂)	
ENERGIZED – GAS	Water	27 - 57%	Nitrogen (N ₂)	
OIL-BASED	Crude Oil, Kerosene, Diesel, Liquid Petroleum Gas (LPG), Propane	>55%	None	

HFF – Comparison

	Water-based	Energized- cryogenic	Energized-Gas	Oil-based
High formation damage				
High water use				
High proppant capacity				
High recovery rates				
High cost				
Fast clean-up				
Complex fractures				

•

•

•

Area of Study: The Montney Formation, AB

Methodology

- Uniform geologic properties for all wells
- BOE production for **first 12 months**
- A statistical analysis carried out to compare water usage, composition of HFF (FracFocus) and BOE production for each fluid type (geoSCOUT)

	Water	Energized-cryogenic	Energized-gas	Oil-based
Number of wells	229	178	81	108
Average number of stages	37	26	24	19
Average water used [m3]	30583	6039	3766	0
Average BOE per well	194217	184761	118314	107016
Average efficiency (BOE divided by no. of stages)	5584	7116	5376	5528

 Water-based wells used much higher water volumes (~80%)

- Water-based wells used much higher water volumes (~80%)
- BOE for Water-based fluids is slightly higher than Energized-cryogenic

- Water-based wells used much higher water volumes (~80%)
- BOE for Water-based fluids is slightly higher than Energized-cryogenic
- Water-based 30% more stages, 5% higher BOE

Average number of stages3726Average water used [m3]30583603Average BOE per well1942171847Average efficiency
(BOE divided by no. of stages)5584711

Results – BOE/Stage vs. Water Usage

Results – BOE/Stage vs. Water Usage

- 1) Energized-cryogenic vs waterbased:
- highest normalized BOE production (20% more)

Results – BOE/Stage vs. Water Usage

- 1) Energized-cryogenic vs waterbased:
- highest normalized BOE production (20% more)
- 2) Energized-gas & Oil-based vs Water-based:
- similar efficiency
- lower water use in alternative fluids

(Oil-based = no water!)

Wells - Statistics

	Water	Energ	Energized-cryogenic		Energized-gas	Oil-based
Number of wells	229		178		81	108
Average number of stages	37		26		24	19
Average water used [m3]	30583		6039		3766	0
Average BOE per well	194217	184761		118314	107016	
Average efficiency (BOE divided by no. of stages)	5584		7116		5376	5528

OBSERVATION: Water-based fluids not efficient enough: ~30% more HF stages = more time and \$\$\$ Energized-cryogenic higher efficiency ~20%

Results – Popularity of Methods

1) Until 2015, alternatives were the most widely used fluid types in HF operations

Results – Popularity of Methods

- 1) Until 2015, alternatives were the most widely used fluid types in HF operations
- 2) The use of alternate fluids has **decreased** in recent years, likely due to economic conditions

Results – Popularity of Methods

- Until 2015, alternatives were the most widely used fluid types in HF operations
- The use of alternate fluids has decreased in recent years, likely due to economic conditions
- In 2018, more than 90% wells used water-based fracking fluids

Numerical modelling

Abaqus FEM (for Kakwa Field):

Geological

Depth & thickness of layers

• Petrophysical

Porosity & permeability

Geomechanical

Stress state, pore pressure, & rock mechanical properties

• Rheological properties of injected fracturing fluids

Viscosity & density

Numerical modelling

Oil-based

Energized

Numerical modelling

Oil-based

Wate	er-based		1	
		Water	Energized	Oil-based
	Fracture half-length (m)	147	90	109
and an and a second sec	Fracture height (m)	53	60	63
	Fracture opening (mm)	7.6	14	10

25-22-1.14

Analysis Conclusions

- Water-reduced HFF can lead to increased BOE production compared to waterbased HFF in the Montney Formation
- Current alternative methods are more expensive that water-based fracking, but higher production rates and reduced production time would encourage industry to start using alternatives
- The use of alternative HFF in the Montney likely depends on the economic conditions of oil and gas prices
- Reduced freshwater consumption would have positive community and natural environmental impacts

Policy recommendation

Policy recommendation

- Update the Water Conservation and Allocation Policy for Oilfield Injection to include provisions for hydraulic fracturing
 - Provides incentive for easier license renewals if companies achieve the water reduction targets outlined in their license
- Incorporate community and Indigenous voices in the discussions when creating policies
 - including addressing perceived risks and communicating risk management plans,

Questions?

Acknowledgements

- **Dr. Jeffrey Priest** ۲
- Dr. Jennifer Winter •
- Dr. Celia Kennedy ۲
- **Chief Jim Badger** ۲
- Melanie Popp ۲
- **Derek Britten** ۲
- Dan Allan ۲
- **Bill Whitelaw** •
- **NSERC CREATE ReDeveLoP** program under grant #386133824 ۲

References

- 1. Facts About Water in Alberta. Edmonton, AB: Environment and Parks. Last updated December 2010. https://open.alberta.ca/publications/9780778589709
- 2. Wanniarachchi, W. A. M., Ranjith, P. G., & Perera, M. S. A. (2017). Shale gas fracturing using foam-based fracturing fluid: a review. Environmental Earth Sciences, 76(2), 91.
- Barati, R., & Liang, J. T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16).
- 4. Gandossi, L., & Von Estorff, U. (2015). An overview of hydraulic fracturing and other stimulation techniques—Update 2015. Scientific and Technical Research Reports.
- Yekeen, N., Padmanabhan, E., & Idris, A. K. (2018). A review of recent advances in foam-based fracturing fluid application in unconventional reservoirs. Journal of Industrial and Engineering Chemistry.