bt ..
ANy A

Mitigation of Induced Seismicity that is Triggered by Hydraulic Fracturing

Hamzeh Alimohammadi®, Mitchell Boyne?, David Eaton?, Zahra Esmaeilzadeh?, Edouard Kravchinsky® NSERC
University of Calgary?, University of Toronto® CRSNG UNIVERSITY OF

TORONTO CALGARY

Induced
Prediction

Introduction Fracture Growth and Simulated Microseismics
We examine the current state of knowledge in evaluating  (2) With geomechanical modeling focus on: Stable oriented fault L <10° e Seismic energy is only
hazards associated with hydraulic-fracturing induced a) Critical orientation of faults in respect to the minimum and 1 . 5injM, considered from nucleation
seismicity; a particular focus is given to the Duvernay maximum stresses. . 9inj M, of new fractures within the
unconventional resource play in Alberta, Canada. The results b) Reactivation of fault due to stress / fluid pressure changes . 5inj no fault M intact rock mass.
of this study could be generalized for comparable through hydraulic connectivity. 3inj cum.ener;y e Greater seismic energy is
unconventional resources in WCSB. c) Effectiveness of suggested mitigation methods. — 5 inj cum. energy

—9 inj.cum. energy |ndlcat_|ve of a more efficient
5 inj no fault cum. enerc fracturing treatment.

We aim to answer the following questions: This study offers insight into practices to minimize the risk of

Event magnitude M,

(1) What is the feasibility of quantifying geological f,ture induced seismicity.
susceptibility?

e For both fault orientation (stable L and critical £)
fluids are lost to the fault through fractures.

Cumulative Kinetic Energy (J)

i e 0
Geologlcal Factors e 0% OA O& o8 1 15 14 1é 18 3 o3 e For stabl_e fault L fractu_re_s are arrested at the fault.
Numerical time (s) x10’ Once fluid pressures within the fault are greater
than o_._ fractures propagate across the fault.
Th D tional | | min
e uvernay unconventional resource play is - ol fault 2
;5; . geographically divided into the West Shale Basin or Fox Critically oriented fault Z <10° e [or unstable fault
i : Creek play (shown in blue) and the East Shale Basin, or 0.5 _1°= |. 5inj m, fractures are arrested and
= Innisfail play (shown in yellow). Figure from Preston et al. o D 5 |. oinjm, deviated. Once fluid
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s ::; I: g 1 € " 10 .E 3 inj cum. energy greater than O-mln fraCtu reS
| i ':?; . . L . . . T B . tecent ¢ |=>5injcum. energy ropagate favorably from
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e considering/quantifying geological and hydrogeological e o [RES N > = o
e . 7 Je A 5 & e Forstable fault L skipping stages (3 inj) greatly
res parameters: T 5 E . o . >
] = TH o & - = reduces seismicity, while increasing stages (9 inj)
- el umsnu RmaRmeRsﬂlksﬂz:ngzsR23R22ﬂ208 19 RA7R 16 R14R12 ® Pre—eX|St|ng faUItS -3 W reSUItS in greater fIUid IOSS into the faUIt.
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2 oon -.1_. 5 JEdmonton - “Numerical time (&) | ' 1 07 (3 inj) does not reduce seismicity, while increasing
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Duvernay Plays & Assessment Ar e . : .
o s \':"--a"'; Coisgail e Formation overpressure | | | |
s, Dol vils Ay ?.,3% L e The table below summarizes the maximum fluid pressures at For stable faults L, fractures will propagate across
1.4 Kaybob Assessment Area 2 3 . . . L . . . ]
e ey e sl R s iz | e Proximity to reef margins and around the fault at the end of all injections. the fault once fluid pressures within the fault
-4 Innisfail Assessment Area 16 R1URIIRS RORER7RER RATIRIH
Duvernay Fox Creek Play Y i - - . overcome o . .
e el B £ e Lithium concentration . " .
ey iy 3 = Model Stable oriented fault| Critically oriented i
Leduc Reef Complex \ : . ode _ _
=== Edge of Deformed Bel )\\‘ N T2 ko e T R o Rates of natural seismicity 1 fault £ e For unstable faults £, fractures will deviate along the
R 9R 8R 7R 6R 5R 4R a' 2Tl 1);1&.29R.¢7R % .
4 e Fluid injection volume 3 injections 57 0 MPsa 510 MPa fa.lIJI|t. Ofnce l;‘:wd pressutre? ove{ﬁomg o 1}r3§:tufreslt
' ' will preferably propagate from the edges of the fault.
S injections 59.2 MPa 60.4 MPa

e For stable faults L, minimizing fractures contact area
9 injections 58 4 MPa 58 5 MPa with the fault results in less fluid loss and less
' ' pressurisation of the fault.

S Injections
no fault 60.3 MPa 29.7 MPa e For unstable faults £, decreasing injection spacing

results in fewer contact area with the fault due to
short and deviated fracture growth near the fault.

Model using 2D finite-discrete
element method (FDEM) Irazu
software

e Higher pressure perturbations would shift the Mohr circle
towards the failure envelope with critically oriented faults
more likely to fail.

Fault is broken (no cohesion), dry
(no fluids), assume strike-slip fault

(vertical), coefficient of friction
u=0.6
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Rock mass (shale) is fraturable,
homogeneous and isotropic

e Baseline model with 5 injection

Onn- 28 MPac, =70 MPa  noints away from fault
at ~3km (Lavoie et al., 2018)
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